
libstack

libstack ii

COLLABORATORS

TITLE :

libstack

ACTION NAME DATE SIGNATURE

WRITTEN BY August 4, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

libstack iii

Contents

1 libstack 1

1.1 libstack.guide . 1

1.2 libstack.guide/Overview . 1

1.3 libstack.guide/Implementation . 2

1.4 libstack.guide/Basic . 3

1.5 libstack.guide/Additional . 3

1.6 libstack.guide/Usage . 4

1.7 libstack.guide/Advanced . 5

1.8 libstack.guide/Costs . 6

libstack 1 / 6

Chapter 1

libstack

1.1 libstack.guide

The current Amiga OS (V3.1) has a very limited stack handling
compared to most other OSs: Every process has it’s own fixed sized
stack - and that’s all about it. The usual default for this stack is
4k, but that’s not enough for more complicated purposes (like for
example compilers). Setting a higher default is no real solution
because it costs a lot of (widely unused) memory and may be overrun,
too :-(.

But fortunately you can get stack extension with a little help of
the compiler ;-).

Overview
and Desclaimer

Implementation
How it works (in detail).

Usage
Basic.

Advanced
Fine tuning.

Costs
Overhead of stack extension

1.2 libstack.guide/Overview

Overview

libstack 2 / 6

In this file you find everything necessary to use and understand
stack extension. All parts of this document (as well as the stack
extension code itself) are PD and therefore freely distributable. You
use it at your own risk.

1.3 libstack.guide/Implementation

How stack extension works

For a reliable compiler supported stack extension mechanism you need
to check the stack against overflow any time it grows by generating
special checking code. This can happen at three different points in
normal C code:

At function entry
Functions may need lots of variables, fixed sized arrays, preserve
registers etc. The space needed for this is collected together by
the compiler and allocated at function entry. Therefore you may
have to swap to a new stackframe. Note that the function’s
arguments and local variables are accessed over the same mechanism
- therefore it’s necessary to copy the arguments to the new
stackframe. Since you cannot know how many arguments you have to
copy (C allows for a variable number of arguments) a fixed (user
configurable, See

Advanced
.) amount of memory is copied.

When using alloca() or variable sized arrays
Both allocate memory off the stack.

When calling library functions
When calling library functions (glue code or link libraries) the
arguments are put on the stack first, then the function gets
called. Additionally a library function may use more or less stack
on it’s own. The easiest way to handle this is to guarantee a
minimum of free stack (user configurable, See

Advanced
.).

The cleanup for the additional stack works equivalent.

Basic
Basic functions for stack handling

Additional
Additional wrappers needed for performance

libstack 3 / 6

1.4 libstack.guide/Basic

Basic functions for stack extension

These functions are only callable from assembly code. They are the
core of the additional set.

___stkext

Prepares a new stackframe with a minimum of d0 free bytes left.
Returns on the new stackframe. Preserves all registers

___stkext_f

Similar to the previous one, but this function copies the arguments
of the caller and everything on top of them. d1 must be the offset (in
bytes) of the caller’s returnaddress relative to sp. This
returnaddress is replaced by a cleanup function’s address (no explicit
cleanup necessary). Preserves all registers

___stkrst

Similar to ’movel d0,sp’. Falls back to an old stackframe if
necessary. Preserves all registers.

___stkovf

Is the stack overflow handler (called if there is not enough memory
to extend the stack further and the program has to be aborted). Does
not return.

Additionally you find the current limit of the stack in

___stk_limit

Note that this doesn’t point to the lower stack boundary but leaves
some safety zone (See

Advanced
.).

1.5 libstack.guide/Additional

Additional wrappers

These functions are all optimized for speed by checking if the
current stack is already large enough using it if possible and by not
preserving d0,d1,a0,a1. Future versions of the compiler (implementing
registerized parameters) might need a register preserving set. This is
the reason why the basic interface (See

Basic

libstack 4 / 6

.) is documented.

Again all functions are only callable from assembly.

___link_a5_d0_f

May be used at the top of a function instead of link a5,d0. Checks if
the current stackframe is large enough and allocates a new one (over
___stkext_f) if not.

___link_a5_0_f

Same as above but treats d0 as 0.

___sub_d0_sp_f

For usage at the top of a function, similar to sub d0,sp. Works
over ___stkext_f.

___sub_0_sp_f

Same as above but treats d0 as 0.

___sub_d0_sp

Works like sub d0,sp but this time over ___stkext.

___move_d0_sp

___stkrst under a second name.

___unlk_a5_rts

Use this function instead of a simple unlk a5;rts if the current
function calls ___sub_d0_sp and doesn’t clean up later (a5 points to a
different stackframe than sp). Works over ___stkrst. Preserves d0,d1.

___stkchk_d0

Just tests if there are d0 bytes space left on the stack - raising a
stackoverflow if not.

___stkchk_0

Tests if there is any space left.

1.6 libstack.guide/Usage

How to use stack extension

First of all you need a gcc capable of generating the right assembly
output. You should find some source patches for gcc 2.6.3 in the same

libstack 5 / 6

archive you got this file (you are reading) from. Use them to
recompile your compiler.

Once you’ve got the new compiler you got two new target dependant
switches:

* -mstackcheck Emits code that checks if there is enough stack
left. The program exits if not.

* -mstackextend Tries to extend the stack before exiting (this
may happen due to low or fragmented memory).

You can mix functions compiled with or without these switches
without problems. Note that this library builds on libnix and needs
the -noixemul switch.

Caution:

Do not use stack checking and/or extension switches when compiling
hook or interrupt code. Both run in alien contexts with a different
stack and all stack magic must fail. Also don’t try to do some other
stack magic if you want to use stack extension.

Also note that a program compiled with stack extension/checking may
exit() at any function entry or when using alloca or variable sized
arrays. Prepare your cleanup function accordingly (use atexit()).

If you like to write or call functions with more than 256 bytes of
arguments (64 ints, longs or pointers) you should adjust the behaviour
of the stack extension code (See

Advanced
.).

1.7 libstack.guide/Advanced

Stack extension fine tuning

To adjust the behaviour of the stack extension code to your personal
needs you may set some of the following variables (or functions)

unsigned long __stk_minframe (default: 32768)

Minimum amount of memory to allocate for a new stackframe. Setting a
higher value speeds the code up but costs more memory if it is unused.

unsigned long __stk_safezone (default: 2048)

Size of the safety zone (for __stk_limit). Set this to a higher value
if you want to call functions with lots of arguments.

unsigned long __stk_argbytes (default: 256)

libstack 6 / 6

Number of bytes __stkext_f() copies as arguments. Set this to a
higher value if your functions may have lots of arguments.

void _CXOVF(void)

Is a user replaceable stack overflow handler. The default one just
pops up a requester, then exits. This function is not allowed to return.

1.8 libstack.guide/Costs

Overhead of stack extension

The additional code needed for stack extension (or checking) costs
memory and CPU power. Here are some numbers to give you a feeling for
it (times in 1/60s, sizes in bytes (remember that there are lies,
damned lies and benchmarks ;-))):

Test normal checking extending extending
(big stack) (big stack) (big stack) (small stack)

Simple recursive
function runtime 152 221 225 226
(function calling
overhead)

Variable sized 52 136 398 468
array runtime

alloca runtime 31 118 118 118

Own code size 1040 1160 1140

Library code size 0 184 788

	libstack
	libstack.guide
	libstack.guide/Overview
	libstack.guide/Implementation
	libstack.guide/Basic
	libstack.guide/Additional
	libstack.guide/Usage
	libstack.guide/Advanced
	libstack.guide/Costs

